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ABSTRACT 

Recently, research on federated learning has been actively studied 

to improve the performance of federated learning by creating 

clusters with similar characteristics of building electricity demand 

pattern used as input for federated learning. However, because the 

electricity demand pattern changes at a certain period in the 

dynamic industry, it is problematic depending on the parameters of 

the unchanged deep learning model. Accordingly, therefore, it is 

necessary to develop a deep learning model that can adaptively 

learn changing electricity demand patterns and a system that can 

continuously process large-scale data. In this paper, we propose 

adaptive clustered federated learning with seasonal segmentation. 

The proposed method makes segmentation and clustering on 

repeated electricity demand patterns by seasons, and then performs 

the adaptive federated learning for each cluster. Through extensive 

evaluation of actual building electricity demand and weather data, 

the proposed adaptive clustered federated learning technique shows 

around 5% lower the mean square error than the clustered federated 

learning technique. 

KEYWORDS 
Federated Learning, Building Electricity Demand Prediction, 
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1 INTRODUCTION 

With the increase in renewable power generation and 

decentralization of the market, the building electricity demand 

prediction technique is essential research to balance the electricity 

demand and supply in buildings [1]. Recently, as the number of 

Internet of Things (IoT) devices installed in buildings increases, 

research using time series deep learning neural networks has 

become active to reliably predict nonlinearly observed electricity 

demand [2, 3]. In order to generalize the time-series deep learning 

neural network for building electricity demand forecasting, large-

scale electricity demand profiles should be collected from various 

clients.  

 

However, due to the small amount of electricity demand profiles in 

some buildings, the time series deep learning neural network may 

not enough to be trained. For buildings with scarce data, building 

managers have taken a centralized approach, working with multiple 

buildings to gather power demand profiles [4]. This technique 

generalizes time-series deep learning neural networks collected in 

a centralized approach and redistributes them to buildings. 

However, sending data from the client to the central server is 

expensive in terms of communication costs. Additionally, if new 

electricity demand pattern is observed from newly acquired data, 

the data should be sent to a central server for training [5]. At this 

time, because the client sends data to the central server, the personal 

information of client may be infringed. 

 

In order to alleviate this privacy infringement problem and 

expensive communication cost problem, a federated learning 

approach that can learn distributed across local buildings has been 

adopted [6]. The federated learning is a distributed machine 

learning technique in which buildings participating in model 

learning cooperate to learn a global model under the control of a 

central entity. The federated learning can preserve privacy by 

sharing the weights of model in a local building with a central entity 

instead of electricity demand. However, if a non-i.i.d (not 

independent and identically distributed) problem such as statistical 

heterogeneity by irregular behavior of occupants and weather, the 

convergence and performance of federated learning can be 

deteriorated. 

 

In order to alleviate this non-i.i.d problem, a clustered federated 

learning technique that performs clustering of clients who have 

similar electricity consumption patterns in advance and then 

aggregates model updates between clients in the same cluster was 

proposed [8, 9]. However, because the electricity demand pattern is 

markedly changed by the seasons, it is recommended to perform 

clustering again when the season changes [10]. In other words, the 

building electricity demand prediction model needs constant 

updating to capture changes in some building physical properties 

over time due to changes in external factors such as weather or 

internal factors such as interior furniture and occupancy 

distribution. A solution to this problem is to develop an adaptive 

ML-based building model that accurately diagnoses the knowledge 

of individual learners by using intelligent information technology-

based systems such as big data and artificial intelligence, and 

dynamically adjusts the learning level or type according to the 

results. 
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In this paper, we propose adaptive federated learning with seasonal 

segmentation and clustering of electricity demand patterns. The 

proposed method has segmentation and clustering for extracting 

electricity demand patterns observed seasonality by period, and 

then the federated learning is performed for each cluster. At this 

time, the adaptive learning is performed to continuously update 

periodic features. In order to verify the effectiveness of the 

proposed framework, we evaluated the mean square error of the 

proposed method according to the clustering result based on actual 

building electricity demand data and weather data. 

 

2 RELATED WORK 

In order to improve the short-term energy consumption prediction 

techniques, Long Short-Term Memory(LSTM) is showing high 

performance in predicting electricity demand [11]. However, 

because LSTM can guarantee performance only when large-scale 

data is used for training, it is a complicated approach from a 

computational viewpoint. So far, in order to centrally train the 

model to generalize, deep learning neural network-based solutions 

have a common aspect that requires a centralized entity who 

collects energy profiles from customers. 

 

For this, the neural network training pipeline collects client data for 

model training from the central server. Sending data from client to 

server is expensive in terms of communication cost. In addition, in 

order to adapt the model to new demand patterns in the future, 

newly acquired data should be transmitted to the central server [5]. 

In this case, since the clients transmit data itself to the central server, 

the personal information of client may be infringed. To overcome 

these communication cost problems and privacy infringement 

problems, the federated learning can be applied [12], which allows 

clients to cooperatively train deep neural networks on their own 

local data without the need for centralization. However, training 

neural networks with federated learning usually have problems 

with non-i.i.d data [13], where clients involve different data 

distributions. As a result, global models created by aggregating 

different client model updates have poor convergence and poor 

performance. To alleviate this non-i.i.d problem, a technique for 

clustering electricity consumers with similar properties is needed. 

 

In order to improve the performance of federated learning for 

electricity demand forecasting, clustering techniques which groups 

residential customers according to the similarity of their energy 

consumption patterns is being studied [8]. When training deep 

learning neural networks using only consumer pattern identified in 

the same cluster, the performance of deep learning neural networks 

is greatly improved. Moreover, because of electricity patterns of 

consumers are affected by weather (temperature and humidity) [14, 

15] and calendar (day or month)[16], it is necessary to perform 

clustering with each feature [17]. In order to capture changes in 

electricity demand patterns caused by external and internal factors 

such as weather and occupancy distribution over time, continuous 

update of the clustered federated learning is required. According to 

the results, dynamically adaptive learning is required according to 

the clustering situation. In this paper, we propose adaptive clustered 

federated learning with seasonal segmentation. 

 

3  ADAPTIVE CLUSTERED FEDERATED 

LEARNING SYSTEM 

The framework contains buildings 𝑀  and a cloud 𝐺 . Let 𝐵 =

{𝑏1, 𝑏2, . . , 𝑏𝑚} denote the set of buildings. Each building collects 

an electricity demand profile consisting of the electricity demand, 

internal temperature, and internal humidity. The electricity demand 

profile collected in the 𝑚𝑡ℎ  building is represented as 𝐷𝑚 . We 

assume that federated learning task for cluster 𝐶 will be assigned to 

the cloud 𝐺 . In the cloud 𝐺 , the clustered federated learning is 

performed by pre-configuring the clusters 𝐶 that shows a similar 

electricity demand pattern. However, the data of the electricity 

demand profile is repeated by period, and clusters configured for 

each period can be different. After performing clustering by period, 

an adaptive machine learning is needed for re-learning the weights 

of the previous model. In this paper, we propose adaptive clustered 

federated learning system. Figs. 1 shows the adaptive clustered 

federated learning system architecture. First, the proposed system 

has segmentation and clustering using electricity demand patterns 

by period in which seasonality is prominent. Then the clustered 

federated learning is performed using segmentation and clustering 

results on a periodic basis. 

 
Figure 1: Adaptive Clustered Federated Learning System Architecture  
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3.1 Seasonal Segmentation Clustering  

In the presence of dynamic changes in electricity demand patterns, 

clustering can identify similar patterns, but clustering is impractical 

due to the high dimensions, characteristic correlation, and noise of 

long time series data. Changes in daily, weekly, and monthly 

electricity consumption of consumption data at different 

aggregation levels were subdivided to identify consumer 

consumption behavior at different times of the day, along with 

seasonal influences. The electricity demand pattern is repeated, and 

the clustering result is different for each period. This period 𝑃 can 

be day, week, or month. For seasonal clustering, the electricity 

demand profile is segmented by period. The number of clusters by 

period is represented as follows: 

 

𝑁 = |𝐷𝑚|/𝑃 (1) 

 

To cluster electricity demand profiles segmented by daily, weekly 

and monthly, we use a simple, efficient and scalable K-means 

algorithm. The clustering result of the 𝑛𝑡ℎ period is 𝐶𝑛. The cluster 

id of the 𝑚𝑡ℎ building is represented as 𝑐𝑛,𝑘, which is the cluster id 

of the 𝑘𝑡ℎ cluster in the 𝑛𝑡ℎ period. The final clustering id of the 

𝑚𝑡ℎ building is the most frequently observed cluster id. 

 

3.2 STL-LSTM based Electricity Demand 

Prediction  

The proposed electricity demand prediction method estimates 

electricity demand based on LSTM, a time series neural network 

model. The proposed model consists of 3 LSTM layers and 3 Dense 

layers. Of these three Dense layers, the first two layers use a 

Rectified Linear Unit (ReLU) activation function, and the last layer 

uses a linear activation function. Each layer contains 10 nodes. The 

proposed LSTM model predicts the electricity demand for the next 

1 hour by using 10 consecutive electricity demand information 

from a specific time to 9 hours before. To ensure the stability of the 

prediction for the observed electricity demand, the input vector for 

the proposed LSTM model is composed of six domains of the 

electricity demand profiles 𝐷 : electricity demand, indoor 

temperature, indoor humidity, month index, hour index, and day 

type. The proposed LSTM model is trained as an input vector to 

predict electricity demand. 

 

The first, second and third domains of the input vector are 

electricity demand, room temperature and room relative humidity. 

Each domain feature is decomposed into seasonality, trend, and 

residual through STL decomposition, which is then constructed as 

an input vector. The fourth and fifth domains of the input vector are 

hourly and monthly indices. The monthly index has a value 

between 1 and 12, and the hourly index has a value between 1 and 

24. Finally, the sixth domain of the input vector is the type of day 

of the week. The day type embeds the relationship between day 

characteristics and electricity demand through one-hot encoding by 

considering eight categories including holidays. The proposed 

model is trained through federated learning. 

 

3.3 Adaptive Clustered Federated Learning  

The clustered federated learning is the method that shares the 

weight of the deep learning model of buildings included in the 

cluster and average it. However, the proposed adaptive clustered 

federated learning requires that the buildings contained in the 

cluster differ by period, and the method transfer the model weights 

of the period 𝑛 − 1 to the model weights of the period 𝑛. In other 

words, in order to update the model weight, the next clusters should 

be selected for each cluster. Figs. 2 shows cluster selection by 

period. The id of the 6 buildings belonging to the 1st cluster 𝐶𝑛−1,1 

in the period 𝑛 − 1 is different in the period 𝑛. In the period n, 2 

with the largest number is selected. This cluster selection algorithm 

is performed when federated learning proceeds. 

 

In the federated learning, the cloud 𝐺  initializes the weight of 

global model ω0
𝑔

, parameters such as learning rate μ, and batch size 

𝑏. The global model ω𝑔 is transmitted to each building and learned 

using the electricity demand profiles 𝐷𝑚,𝑛 corresponding to period 

𝑛. The formula for updating model learned in the 𝑖𝑡ℎ building using 

the global model weight ω𝑟
𝑔𝑛,𝑘  of 𝑘𝑡ℎ  cluster in 𝑛𝑡ℎ  period is as 

follows: 

 

ω𝑟+1
𝑚𝑖 = {

μ ∙ ∇loss(ω0
𝑔

; 𝑏), r =  0

μ ∙ ∇loss(ω𝑟
𝑔𝑛,𝑘; 𝑏), else

 (2) 

 

The weight of model ω𝑟
𝑚𝑖  learned in the 𝑖𝑡ℎ building at round 𝑟 is 

transmitted to the cloud 𝐺. The cloud 𝐺 aggregates updated model 

weights ω𝑟
𝑚1 , … , ω𝑟

𝑚𝑖  from 1  to 𝑚  buildings and learns them 

through FedAvg. In this case, |𝐷𝑚𝑖
| means the size of the data 

collected in the 𝑖𝑡ℎ building, and the weight of the global model 

ω𝑟
𝑚𝑖  at round 𝑟  is averaged through FedAvg. The formula of 

FedAvg is as follows: 

 

ω𝑟+1

𝑔𝑛,𝑘 = ∑
|𝐷𝑚𝑖

| ∙ ω𝑟+1
𝑚𝑖

|𝐷𝑚𝑖
|

𝐶𝑛,𝑘

𝑚𝑖∈𝐶𝑛,𝑘

 (3) 

 

 
Figure 2: Cluster Selection by Period 
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4 Evaluation 

In order to evaluate the proposed adaptive clustered federated 

learning method for building electricity demand prediction, we 

compare the performance of the adaptive clustered federated 

learning system the clustered federated learning and the basic 

federated learning. We use the building electricity demand data set 

of CityLearn[18] pre-calculated by CitySim[19], a building energy 

simulator, for the experiment. The CityLearn environment consists 

of 4 anonymized climate zones and 9 building clusters per climate 

zone. Each building data set consists of electricity demand data 

measured hourly over a year. This experiment is performed on a 

machine with two NVIDIA GeForce RTX 2080 SUPER installed, 

based on a Docker container, with a cluster consisting of one Chief 

node and 36 Worker nodes.  

 

4.1 Comparison of Clustering Results per Period 

In this chapter, we identify representative electricity demand 

profiles by period and determine the optimal number of clusters. 

First, Calinski Harabasz Index(CHI) and Davies-Bouldin Index 

(DBI) were used to identify the most suitable number of clusters. 

This is a commonly used measurement to assess how well a data 

set is segmented.  

 

Table. 1 shows the comparison of cluster validity indices DBI and 

CHI according to the number of clusters using the K-means 

algorithm. DBI captures the separation and compactness of all pairs 

of data clusters and returns a system-wide similarity measure of 

each cluster compared with its most similar neighbor. That is, the 

lower the value of DBI, the better the clustering. CHI knowns as 

the variance ratio criterion that measures how well clusters are 

defined. It returns the CHI score calculated by the ratio of average 

inter-cluster and intra-cluster sum of squares. That is, the lower the 

DBI, the better the clustering. That is, the higher the value of CHI, 

the better the clustering. Accordingly, when the number of clusters 

is 8, efficient clustering is achieved.  

 

Table. 2 shows the list of buildings that make up a cluster when 

there are 8 number of clusters. Z and B stand for the climate zone 

and the building id, respectively. In Table. 2, Clusters 5, 6, 7, and 

8 consist of buildings that belong to different climate zones whereas 

clusters 1, 2, 3, and 4 consist of buildings that belong to the 

identical climate zones. Therefore, the performance of clustered 

federated learning is compared between clusters configured 

buildings in the identical climate zone and different climate zones. 

However, as the length of the electricity demand profile increases, 

the performance of clustering can be lower. 

 

Figure. 3 shows the representative shape of demand profiles by 

period. First, we analyze the electricity demand pattern that appears 

by day period. In Figure. 3 Day (a) and (b), it shows the demand 

pattern for electricity on weekdays, and the difference between the 

two figures varies depending on the characteristics of the building. 

In Figure. 3 Day (c), it shows the demand pattern for electricity on 

Saturdays. Day (c) shows the relatively lower electricity demand 

compared to Day (a) and (b). In Figure. 3 Day (d), it shows the 

demand pattern for electricity on Sundays and holidays. Electricity 

demand patterns on holidays and Sundays are less and more 

irregular than other electricity demand patterns. In other words, the 

clustering by day period is correlated with the day type, and more 

detailed clustering is possible. In Figure. 3 Month (a), (b), (c), and 

(d), it shows the monthly electricity demand pattern.  

 

And we analyze the electricity demand pattern that appears by week 

period and month period. In Figure. 3 Week (a), (b), and (c), it 

shows a common weekly electricity demand pattern. Whereas 

Figure. 3 Week (d) shows the electricity demand pattern including 

relatively a lot of holidays. However, it is difficult to visually 

identify the monthly electricity demand pattern whether clustering 

is done properly. That is, as the period increases, it may be seen that 

the result of clustering is suspicious. 

 

4.2 Performance Comparison of Different 

Federated Learning  

In this chapter, we compare the performance of different federated 

learning methods. The performance of federated learning can be 

affected by the characteristics and profiles of buildings 

 

 

Figure 3: Seasonal Segmentation Clustering Result of 

Electricity Demand Profiles by Period: Day, Week, Month 

 

 

Table 1: Comparison of cluster validity indices of  

K-means according to the number of clusters. 

Num. Cluster Method DBI CHI 

5 K-means 2.03 13.14 

6 K-means 1.98 13.75 

7 K-means 1.92 14.63 

8 K-means 1.83 14.74 

 

Table 2: List of Buildings by Cluster when there are 8 

number of Clusters 

Cluster id Building List 

1 Z1B1, Z2B1, Z3B1, Z4B1 

2 Z1B2, Z2B2, Z3B2, Z4B2 

3 Z1B3, Z2B3, Z3B3, Z4B3 

4 Z1B4, Z2B4, Z3B4, Z4B4 

5 Z1B5, Z1B6, Z1B7, Z1B8, Z1B9 

6 Z2B5, Z2B6, Z2B7, Z2B8, Z2B9 

7 Z3B5, Z3B6, Z3B7, Z3B8, Z3B9 

8 Z4B5, Z4B6, Z4B7, Z4B8, Z4B9 
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participating in federated learning because they learn different 

climate and electricity demand patterns located in each building. 

The first 10 months of each dataset are used to learn the LSTM 

model and the next 2 months are used for testing. For LSTM model 

learning, we use Adam Optimizer and set a batch size and the 

number of rounds to 70 and 100. And we compare the performance 

of the proposed adaptive clustered federated learning (ACFL), the 

clustered federated learning (CFL), and the basic federated learning 

(BFL) using the mean square error (MSE). 

 

Figure. 4 shows the performance comparison of the different 

federated learning method with clusters in identical climate zones. 

Because buildings located in the different climate zone as well as 

in identical climate zones participate in BFL, the MSE of BFL is 

relatively higher than other methods. On the other hand, because 

only buildings located in the identical climate zone participate in 

learning, the MSE of CFL is relatively small. The proposed ACFL 

method shows the lowest MSE compared to other methods because 

it performs more detailed clustering compared to CFL. However, 

the performance of federated learning can be lower when buildings 

located in other climate zones participate in the federated learning. 

 

Figure. 5 shows the performance comparison of the different 

federated learning method with clusters in different climate zones. 

Because buildings located in all climate zones can participate in the 

BFL and learn various characteristics, the MSE of BFL is relatively 

lower than other methods. On the other hand, because only 

buildings participate in learning in different climate zones, the MSE 

of CFL is increased. However, the proposed ACFL shows a 

relatively low MSE compared to CFL because it involves similar 

patterns of buildings by period in federated learning. In order to 

grasp the final result at a glance, it is necessary to combine it with 

the results of Figures 4 and 5. 

 

Figure. 6 shows the performance comparison of the different 

federated learning method participated in 36 buildings. The 

proposed ACFL shows approximately 0.05 lower MSE compared 

to CFL and similar MSE to BFL. Because the proposed ACFL has 

different performance depending on the period, it is necessary to 

compare the performance of the ACFL according to the period. 

 

Figure. 7 shows the performance comparison of the adaptive 

clustered federated learning method with different period. As 

shown in Figure. 3, because the clustering result of method using 

day period is better than methods using other periods, ACFL_D has 

lower MSEs compared to ACFL_W and ACFL_M.  

 

5 CONCLUSIONS 

In this paper, we propose the adaptive clustered federated learning 

in order to improve federated learning performance. with seasonal 

segmentation. To adaptively learn federated learning models by 

period, the proposed method uses pre-clustering results using K-

means with seasonal segmentation. The proposed method with 

 
Figure 4: Performance Comparison of Different Federated 

Learning Methods with Clusters in Identical Climate Zones 

 
Figure 5: Performance Comparison of Different Federated 

Learning Methods with Clusters in Different Climate Zone 

 
Figure 6: Performance Comparison of Different Federated 

Learning Methods with All Buildings 

 

 
Figure 7: Performance Comparison of Adaptive Clustered 

Federated Learning Methods with Different Seasonal 

Clustering by Period  
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buildings in Identical climate zone shows the highest performance 

and shows similar performance to basic federated learning with 

buildings in different climate zones. However, because of frequent 

federated learning, the proposed method is not efficient in terms of 

network performance. In the future, in order to improve the network 

efficiency of federated learning, the federated clustering technique 

will be applied to federated learning. 
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